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ABSTRACT

We consider a parameterized pseudo-random model for seeding supernovae in a galactic disk in
order to reproduce the clusering statistics relevant to the non-linear production of momentum in the
Sedov-Taylor phase of supernova remnant evolution. We believe that a non-linear amplification of
momentum related to the overlapping of multiple supernova remnants, so called “superbubbles” can
explain the observed sensitivity of the mass loading factor, η, on the fiducial random seeding scheme
in previous studies of galaxy evolution. We find that it is indeed possible to reproduce the emergent
clustering statistics of the self-consistent supernova seeding scheme in the FIRE simulations with a
simpler pseudo-random model enabling future studies of ultra-high resolution to study the effects of
stellar feedback without explicitly modeling the large scale stellar evolution processes. However, there
are indications that matching the morphology of the self-consistently modeled superbubbles using
this first order scheme for synthetically generated superbubbles is not automatically satisfied, leaving
room for improvement in order to fully capture the details of the clustering statistics in the FIRE
simulation.

1. INTRODUCTION

One of the most important questions in studies of
galaxy evolution is the link between the energy and mo-
mentum injected by supernovae and the suppression of
new star formation by expelling potentially star form-
ing gas. The exact mechanism by which this process is
regulated is still hotly debated (Faucher-Giguère et al.
2013; Krumholz and Burkhart 2016). However, previ-
ous studies on the subject have shown that the rate of
expelled gas sensitively depends on the way that super-
novae are placed, or seeded, in the galactic disk (Martizzi
et al. 2016)– varying by an order of magnitude when com-
paring the simplest assumptions. However, both seed-
ing models compared in Martizzi et al. (2016) result in
an under-estimate for the value of the mass loading fac-
tor, η, when compared to the more physically motivated,
and self-consistent, FIRE simulations (Muratov et al.
2015). The FIRE simulations represent a suite of of high-
resolution ”zoom in” simulations with initial conditions
for simulated galaxy “halos” that are generated from a
low resolution simulation of a cosmological sample. How-
ever, because of computational limitations feedback pro-
cesses are often estimated using “sub-grid models” that
encapsulate the physics of the process without explicitly
resolving it. These sub-grid models are typically derived
either from analytic arguments or from higher resolution,
and smaller scale, simulations.

In order to address the question, we consider one
of these higher resolution simulations of an individual
galaxy and explicitly track the location and time of in-
dividual supernova events. By comparing the spatial
and temporal correlations of this “self-consistent” sam-
ple with those of random models parameterized we can
characterize how “un-random” the self-consistent case is.
Specifically, we develop a recursive friends-of-friends al-
gorithm that that uses a dynamic linking length. That
length is determined by the radius to which the super-

nova grows before mixing with the surrounding inter-
stellar medium, which is a function of the ambient gas
density at the location of the supernova following the pre-
scription for the “cooling radius,” Rcool, in an inhomoge-
nous interstellar medium from Martizzi et al. (2015). We
develop a fully automatic and self-consistent framework
with which to consider an arbitrary PDF for the “cluster-
ing strength,” a measure of the number of superbubbles
produced of a given size. From this PDF one can gener-
ate clusters of a prescribed internal structure according
to a second arbitrary PDF for the fiducial linking radii of
the synthetic cluster– not to be confused with the cooling
radius, which is a physical quantity that is a function of
the ambient density wherein the fiducial linking radius
is an arbitrary statistic used here only to generate the
synthetic clusters.

The structure of this paper is as follows: in Section 2
we outline our methods for parameterization, in Section
3 we consider the effectiveness and flexibility of this pa-
rameterization, in Section 4 we present our discussion of
these results, and in Section 5 we give our conclusions
and discuss the next steps in this work.

2. METHODOLOGY

2.1. Measuring the Number and Size of Superbubbles

We define the “clustering strength” as the functional
form of the of the relationship between the size of a
“cluster” of supernovae and the number of clusters of
that size– where a cluster is defined as a group of su-
pernovae who are members of a friends of friends group.
Supernovae are determined to be members of a friends
of friends group if and only if the epicenter of another
member of the group is within their cooling radius (or
if a supernova’s epicenter is contained within a member
of the group’s cooling radius). An important caveat to
mention as well, is that a supernova is only considered
to be “within” the cooling radius of another remnant if
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Fig. 1.— The clustering strength as realized when using the
self consistent model that is also used in the FIRE simulations
compared to that when supernovae are seeded purely randomly.
Here, a best fit power law is overplotted for each as determined

by a linear regression with uncertainties estimated as
√
N (here

suppressed from the plot). This crude estimate is a first order
approximation to the clustering strength.

and only if the two also overlap in time– only supernovae
and remnants that coexist at the same time are also con-
sidered to be overlapping if one’s remnant contains the
other.

Cooling radii and times (the lifetime of the remnant)
are determined by measuring the local gas density at
the epicenter of the supernova following the prescription
for an inhomogenous interstellar medium from Martizzi
et al. (2015). We believe that by correctly capturing the
number of superbubbles of a given size it is likely that
the amount of momentum generated, and thereby the
amount of mass ejected from the galaxy, will be captured
as well. Therefore, it is imperative to the science to, at
the very least, correctly reproduce the clustering strength
realized in the simulation.

Figures 1 and 2 compare the clustering strength real-
ized in the simulation in the “Self Consistent” case and
the case where supernovae are seeded totally randomly.
Figure 1 fits a single power law over the entire range of
cluster size which is an alright approximation for the to-
tally random case in red but a pretty obviously bad one
for the self consistent case plotted in blue. A better de-
scription is given when you allow for a second power law
for “large” cluster sizes, here this is determined to be
above N=4. We determine this by minimizing the total
χ2 as a function of the position of the joint, using inde-
pendent linear regression fits for the points on either side.
Broken power laws are thus computed for every possible
joint position, excluding the endpoints for obvious rea-
sons, and the one that results in the smallest value of χ2

is chosen as the best fit. In both cases, uncertainties are
estimated as

√
N where N is the number of clusters in

each bin. This is a gross approximation that serves only
to apply some level of weight to the early as their con-
tribution is otherwise washed out when weighted equally
with the more numerous later points.

2.2. Seeding and Populating Synthetic Clusters

Fig. 2.— The clustering strength as realized when using the self
consistent model that is also used in the FIRE simulations com-
pared to that when supernovae are seeded purely randomly. Here,
a best fit broken power law is overplotted for each as determined

by a linear regression with uncertainties estimated as
√
N (here

suppressed from the plot). The position of the joint is determined
by considering the set of broken power laws that correspond to a
linear regression using points on either side of the joint for any
joint position. The one with the smallest χ2 is chosen as the “best
fit.” Compared to Figure 1 this gives a much better description of
the clustering strength.

We seed supernovae by following a relatively simple
prescription for generating ad hoc synthetic clusters that
are placed into random locations in the simulation. Clus-
ter “heads” are placed randomly in space within some
slab representing the area where the bulk of the galactic
disk is. All supernovae are assigned a launch time uni-
formly, though in principle this too is a PDF that is a
function of the shape of the star formation rate of that
galaxy.

After placing the cluster head, subsequent members
are added iteratively by randomly selecting a member of
the cluster and placing the next member at a random
location within a fiducial radius that is specified with
an arbitrary PDF, here we use a single Gaussian distri-
bution but in principle one could let this PDF become
a (many) degree of freedom(s), until the cluster reaches
its predetermined size. The number of synthetic clusters
that are produced of a given size is determined by a cho-
sen PDF for the clustering strength, which is taken as an
input. This process, hereafter referred to as “running an
input PDF” is laid out as:

1. Choose an input PDF for the clustering strength.

2. Generate a uniformly distributed random number
between [0,1].

3. use the CDF of your input PDF to determine what
cluster size that random number corresponds to.

4. Place the head of the cluster at a random loca-
tion within a 3D slab encompassing the bulk of the
galactic disk.

5. Choose a random member of the cluster (the first
time you reach this step the only option is the
head).
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Fig. 3.— Here we show two sample input PDFs for the clustering
strength used to generate synthetic supernova clusters. In the top
panel, a single power law is plotted in blue while a broken power
law is plotted in red. The same color scheme is used in the bottom
panel, where the CDF, approximated from numerical integration
of the curves in the top panel, is plotted as well. The points in the
bottom panel are those used to draw points from the PDF when
numerically inverted for uniformly distributed values between [0,1].

6. Generate another uniformly distributed random
number between [0,1].

7. Use the CDF of your chosen fiducial radial PDF to
determine how far away you should place the new
member.

8. Randomly place the new member within that ra-
dius.

9. Return to Step 5 until the total size of the cluster
reaches the size determined from Step 3.

10. Return to Step 2 until the total number of super-
novae, summed over all the synthetic clusters, is
above some predetermined value. Here we use the
total number of supernovae launched within an av-
erage 1Myr time interval in the self consistent case.

In Figure 3 we show two sample input PDFs for the
clustering strength. The bottom panel shows the CDF,
which we numerically integrate. Points on the CDF are
successively approximated as points are drawn from the
distribution, increasing the resolution of the numerical
inversion as time goes on. This way, the algorithm and
code structure we use can be applied to any arbitrary
PDF, regardless of its invertibility.

From here, the synthetic supernovae are treated iden-
tically to the randomly and self consistently generated
supernovae and passed into the same friends of friends
grouping algorithm. Any information about fiducial radii
or synthetic cluster identity is lost as new linking radii,
corresponding to the ambient density around the syn-
thetically generated supernovae, are assigned and clus-
ter identity is determined as described in the beginning
of Section 2.

3. RESULTS

After running a number of input PDFs (see steps in
Section 2) a best fit model can be computed. In principle,

this can be automated and input arbitrary PDFs can be
generated iteratively after comparison utilizing a Monte
Carlo evolution algorithm though (unfortunately) this is
outside the scope of this work.

Instead, we run a comprehensive set of power law and
broken power law PDF tuning their various parame-
ters until the measured clustering strength independently
match that of their self consistent counterparts. Here
we report the results of the best fit power law and bro-
ken power law input PDF, the specific coefficients of
which are found in Figure 3, and the resulting clustering
strength in Figures 5 and 6, which was used to deter-
mine the fit, and the emergent distribution of cooling
radii, shown in Figure 7, as a function of cluster size, a
rough descriptor of the morphology of the supperbubbles
as a function of their population.

3.1. Measuring the Clustering Strength

After running a comprehensive series of input PDFs for
both power law and broken power law forms we find the
best fit to the self consistent clustering strength for both
cases respectively. We note however that while these
clustering strength relationships agree fairly well that
does not necessitate that the underlying distribution is
recovered.

This is apparent in Figure 5 where the two best fits
agree fairly well but the synthetic population has sig-
nifcantly more smaller clusters than the self consistent
case and consequently fewer larger clusters to make up
for it. This has the combined effect of washing out any
cohesive correlation that might be visible when the pop-
ulations are visualized, as in Figure 4. In the end, this
results in a distribution that is qualitatively more simi-
lar to the completely random case, even if there is some
coherent structure hidden in the quantitative details.

On the other hand, the broken power law formulation
for the input PDF results in a starkly better description
of the clustering power, shown in Figure 6. Though there
is a vertical slight offset in the second half of the best fit
broken power law with respect to the self consistent case
this is consistent with the fluctuations at that low num-
ber level of cluster size. A single large cluster could push
the fit up marginally without changing its overall shape,
which is what we see here. Comparing the distributions
themselves, they are remarkably similar over the entire
range of cluster size N . Additionally, the high level of
correlation in the visualization of the broken power law
input PDF in Figure 4 is qualitatively similar to the self
consistent case and markedly different from the random
case, obviously lacking the same inherent spiral struc-
ture.

3.2. Measuring the Distribution of Cooling Radii

In addition to a simple census census of superbubbles
as described in the previous sections in detail, the in-
ternal structure and morphology of the cluster can play
an important role in the amount of momentum gener-
ated by the cluster and consequently the mass ejected
from the disk. The consequences for a difference in mor-
phology are discussed in Section 4 in more detail but it
suffices to say that a cluster whose supernovae primarily
have small Rcool, representing a long chain of small rem-
nants, is qualitatively different than a cluster made up of
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Fig. 4.— Thumbnails of the volume weighted gas density distribution with decimated supernova populations overlaid in different colors.
The leftmost panel shows the self-consistent population in blue which clearly follows the spiral structure and morphology of the galaxy. In
the middle panel the totally random population is plotted in red, showing no structure or correspondence to the underlying gas density
distribution. The rightmost panel shows the synthetic population in yellow. The top row is decimated, plotting only 1

8
th of the points

while the bottom is not decimated at all. The synthetic panel of the top row is drawn from the best fit power law input PDF while the
bottom row is drawn from the best fit broken power law PDF. Allowing the joint in the input PDF results in significantly more correlation
and structure. Decimation is performed on the top row because otherwise the middle and right panels would be indistinguishable (re: both
are a solid block). This is not necessary for the bottom row as the structure is emergent from the input PDF.

a few supernovae with large Rcool encompassing a large
number of smaller remnants. These differences would
be apparent on a plot of the distribution of Rcool versus
cluster size. This is shown in Figure 7, where each panel
represents a bin in cluster size, whose edges are denoted
in that panel’s subtitle. All supernovae that belong to
a cluster of size N that fall within that panel’s bin are
plotted, regardless of if they belong to the same cluster
or not. This has the effect of washing out a lot of the
effects morphology might have on a plot like this by av-
erage over clusters of different morphology. Regardless,
if a specific morphology dominates clusters of a given
size this should still be apparent through the apparent
dilution with other sorts of morphologies.

Qualitatively speaking, the synthetic broken power law
PDF input, plotted in green, matches the self consis-
tent case (blue) much better than the synthetic power
law PDF input (yellow). This is most apparent in the

[3,6),[6,10),[100,178), and [178,316) panels. In the latter
two, there arren’t actually any synthetic power law input
PDF clusters of that size, which is a result of the analysis
presented in the previous subsection. However, a stark
contrast between the green and blue curves presents it-
self in the final two panels, where even the broken power
law input PDF doesn’t produce a cluster of N > 1000.
Most interestingly however is the difference in the Rcool

PDFs in the [316,562) panel where the morphologies of
the two are clearly different. Where the blue curve ex-
tends to cooling radii of ≈ 1 kpc and then down to much
smaller cooling radii of tens of pc the green curve is com-
prised of entirely cooling radii of ≈ 100 pc. The former
suggests a single (or few) large supernovae encompassing
an area cleared away and disturbed by many more much
smaller supernovae where the latter describes a scenario
where a chain of intermediate supernovae all go off in
a similarly dense medium. It becomes necessary at this
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Fig. 5.— Analogous to Figure 1 this shows the measured clus-
tering strength with the best fit power law (dashed) derived from
a linear regression for the self consistent (blue), random (red), and
synthetic using a power law input PDF (yellow) supernova popu-
lations. While the self consistent and synthetic best fit powerlaws
may be similar, the distributions themselves look qualitatively dif-
ferent indicating that the rough approximation of a single power
law for an input PDF is not enough.

Fig. 6.— Analogous to Figure 2 this shows the measured clus-
tering strength with the best fit broken power law (dashed) de-
rived from a linear regression for the self consistent (blue), random
(red), and synthetic using a broken power law input PDF (yellow)
supernova populations. Here, a small offset in the second part of
the best fit broken power law is well within the uncertainty (here

suppressed, but crudely estimated as
√
N , in that regime. The dis-

tributions themselves look very similar throughout the entire range
of cluster size N . This shows marked improvement over Figure 5,
giving good support for a broken power law input PDF.

point to remind that plots like these necessarily average
over time, as well as in this case space when considering
different clusters of identical length. The implications of
this important qualitative difference are discussed in the
next section.

4. DISCUSSION

Looking at the details of the differences between the
power law and broken power law input PDFs and why

they result in categorically different populations of su-
pernovae is relatively straight forward. Figure 3 shows
the best fit power law and broken power law input PDFs
and their corresponding CDFs. Of note, though the in-
put PDFs are very different, in the regime before the joint
in the broken PDF the integral is very similar showing
that for small clusters a power law is not a bad approxi-
mation. However, the power law severely underestimates
the number of large clusters as its CDF quickly rises to
1. We know that the large clusters represent the very
massive superbubbles we believe are important to gener-
ating the large amounts of momentum required to expel
mass at the observed rate of galactic outflows. Therefore
a power law PDF by nature will suppress the number
of superbubbles created, and the ensuing mass loading
factor.

Figure 4 shows that the macroscopic orientation of the
supernova clusters is very different in the self consistent
and broken power law input PDF cases. However, it is
not obviously clear that the spiral structure of the super-
nova clusters, mimicking the gas density distribution, is
an important factor in the amount of mass ejected from
the galaxy disk. Supernovae that are launched in a rela-
tively evacuated medium quickly sweep up the low den-
sity mass without much change in energy, generating a lot
of momentum in the process, see the Sedov-Taylor phase
of supernova remnant expansion. Therefore, though the
self consistent case results in supernovae that follow the
overall spiral structure of the galactic disk it may be
true that supernovae launched in regions outside the spi-
ral arms of the disk expand quickly without sweeping
up much gas or losing much energy, hitting the disk in
the same energy-momentum phase space that it would’ve
been launched in anyway if it were launched within the
disk itself. The effect of this difference could be mea-
sured by running additional simulations using this new
pseudo-random seeding scheme and looking at the rate
at which gas is expelled in both the self consistent and
pseudo-random cases.

To consider the difference that the relatively “small-
scale” cluster morphology might have on the momentum
generated take for example, a superbubble made up of
a long chain of small supernovae is qualitatively differ-
ent than having a similar superbubble constituted of the
same number of supernovae but instead with one single
massive remnant that encompasses many smaller rem-
nants in a more spherical geometry. Naively one could
imagine that the chain of small remnants wouldn’t form
a cohesive single bubble the pushes outward from the
disk while the latter case presents as many single bub-
bles clearing out the area for a single massive bubble to
sweep up the disturbed remains without hitting any par-
ticularly dense patches which would slow it down. This
is relevant because we see in Figure 7 that the largest
clusters produced in the self consistent case are made
up one relatively few very large supernovae with many
more smaller supernovae filling the bulk of the rest of the
population of the cluster. We know this is true because
at this size of cluster there are few if even more than a
single cluster of this size so averaging effects across differ-
ent clusters are minimal. Of course one could in principle
make a similar plot where each panel was its own cluster,
but 12 panels proved large enough for our purposes, 1000
would necessitate its own paper– or textbook.
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Fig. 7.— Here we show the normalized PDF of cooling radius for each of the self consistent, random, and synthetic cases (both the
power law and broken power law input PDF cases) dividing the supernova population into bins based on their cluster identity. Each panel
is plotted using only supernovae who belong to a cluster of a given size, noted in the subtitle of the each panel with the right edge excluded.
For example, the top left panel is made up of supernovae that are entirely isolated and not a member of any cluster while the bottom right
panel are the supernovae of the largest cluster formed in the self consistent case (it turns out there is only one of that size). Note that
while the x axes are shared for every panel the y axes are only shared by row in order to show the small amplitude of the intermediate
sized clusters in the middle row properly.Of note is the markedly better agreement of the blue curve with the green curve when compared
to the yellow curve across all panels. The synthetic power law input PDF doesn’t actually produce a cluster larger than 100 members, on
that basis alone arguing for their agreement. Of course, there is room for improvement and this is discussed in section 4.
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5. CONCLUSION

We conclude that overall, based on the agreement in
Figure 6 of the synthetic and self consistent distribu-
tions alone, a more correct description of the clustering
strength comes from considering a broken power law in-
put PDF. This statement is evidenced as well by the
notion that the self consistent case is better described
by a best fit broken power law, shown in Figure 2. Ad-
ditionally, the comparison between the top and bottom
right-most panels in the visualization in Figure 4 makes
a clear qualitative demarcation between the two in favor
of the broken power law as well. On top of that, the
morphology of the clusters, as roughly described in Fig-
ure 7, is more accurately captured by the broken power
law input PDF.

We note that the specific values of the broken power
law input PDF are a function of the galaxies macroscopic
properties and could potentially be prescribed by a star
formation history of the galaxy though future work in
that direction would need to be done to say for certain.
Further, though the qualitative agreement of the clus-
ter morphologies is better for the broken power law case
there is still a significant difference in a way that could
potentially dictate whether the “correct” amount of mo-
mentum would actually be generated for a self consis-
tently modeled cluster when approximated by a pseudo-
random cluster of equivalent size. There is also the point
that the pseudo-random case is blind to the underlying
gas density distribution, it is not obvious that this is

necessarily a problem, but future work might consider
launching the head of the cluster given a PDF consistent
with the underlying gas density distribution in order to
capture the actual positions of the cluster as well– how-
ever this could quickly become very complex as larger
clusters may categorically appear in different areas of
the galaxy when compared to smaller clusters, so a PDF
for the cluster head might itself be a function of the size
of the cluster.

There are also more complicated mathematical frame-
works that might serve to more consistently model the
self consistent launching of supernovae pseudo- ran-
domly. Approximating the self consistent population as
a realization of a 4-D Gaussian field in space and time
could allow you to calculate the correlation statistics in
both time and space, e.g. by using a two point correlation
function, and create a new model that exhibits the same
clustering statistics. You could imagine further tuning
this model to more heavily weight the underlying gas
density distribution in order to doubly handle the ques-
tions of the correlation of clusters with the galaxy struc-
ture and their morphologies simultaneously in a more
rigorous mathematical framework.

All of this and more can be quantified and addressed
with further simulations of isolated galaxies utilizing dif-
ferent supernova launching schemes in order to isolate
the most fundamental piece of the physics that is caus-
ing the enhanced momentum to be generated. Whether
that is the distribution of cluster sizes, their morpholo-
gies, or their locations within the context of the galaxy–
or some combination therein, remains to be seen.
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